翻訳と辞書 |
Weierstrass function : ウィキペディア英語版 | Weierstrass function
In mathematics, the Weierstrass function is an example of a pathological real-valued function on the real line. The function has the property of being continuous everywhere but differentiable nowhere. It is named after its discoverer Karl Weierstrass. Historically, the Weierstrass function is important because it was the first published example (1872) to challenge the notion that every continuous function was differentiable except on a set of isolated points.〔At least two researchers formulated continuous, nowhere differentiable functions before Weierstrass, but their findings were not published in their lifetimes. Around 1831, Bernard Bolzano (1781 - 1848), a Czech mathematician, philosopher, and Catholic priest, constructed such a function; however, it was not published until 1922. See: * Martin Jašek (1922) ("Funkce Bolzanova" ) (Bolzano's function), ''Časopis pro Pěstování Matematiky a Fyziky'' (Journal for the Cultivation of Mathematics and Physics), vol. 51, no. 2, pages 69 - 76 (in Czech and German). * Vojtěch Jarník (1922) "O funkci Bolzanově" (On Bolzano's function), ''Časopis pro Pěstování Matematiky a Fyziky'' (Journal for the Cultivation of Mathematics and Physics), vol. 51, no. 4, pages 248 - 264 (in Czech). Available on-line in Czech at: http://dml.cz/bitstream/handle/10338.dmlcz/109021/CasPestMatFys_051-1922-4_5.pdf . Available on-line in English at: http://dml.cz/bitstream/handle/10338.dmlcz/400073/Bolzano_15-1981-1_6.pdf . * Karel Rychlík (1923) "Über eine Funktion aus Bolzanos handschriftlichem Nachlasse" (On a function from Bolzano's literary remains in manuscript), ''Sitzungsberichte der königlichen Böhmischen Gesellschaft der Wissenschaften'' (Prag) (Proceedings of the Royal Bohemian Society of Philosophy in Prague) (for the years 1921-1922), Class II, no. 4, pages 1-20. (''Sitzungsberichte'' was continued as: ''Věstník Královské české společnosti nauk, třída matematicko-přírodovědecká'' (Journal of the Royal Czech Society of Science, Mathematics and Natural Sciences Class).) Around 1860, Charles Cellérier (1818 - 1889), a professor of mathematics, mechanics, astronomy, and physical geography at the University of Geneva, Switzerland, independently formulated a continuous, nowhere differentiable function that closely resembles Weierstrass's function. Cellérier's discovery was, however, published posthumously: * Cellérier, C. (1890) ("Note sur les principes fondamentaux de l'analyse" ) (Note on the fundamental principles of analysis), ''Bulletin des sciences mathématiques'', second series, vol. 14, pages 142 - 160.〕 ==Construction==
In Weierstrass' original paper, the function was defined as the sum of a Fourier series: : where 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Weierstrass function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|